




#### Low-Temperature Deposition

 $Co_2FeAl_{0.5}Si_{0.5}$  (CFAS)/W/CFAS trilayers were sputtered at substrate temperatures  $T_S$ :



#### Magnetic Properties

### CFAS/W/CFAS trilayers : \*

- Low Ts film has strong intergranular exchange coupling.
- This gives a highly square, low  $H_c$  loop. • Higher  $T_s \rightarrow 50\%$  of the
- reversal is via domain rotation.
- The remainder is via nucleation and domain wall pinning.

#### **Device Characterisation**

- CFAS/Ag/CFAS nanopillars fabricated :
- Due to the lack of individual layer switching in multilayers using a W spacer, Ag was used.
- A 3 nm layer of Ag provided a loop with two distinct switches dependent on layer thickness.
- A small GMR of 0.025% was observed perpendicular-to-plane for device of  $(1 \times 0.5)$ μm<sup>2</sup>.
- Switching occurs at the same field as in the M-H loop, confirming layer thickness dependent switching.

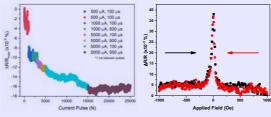
 $\rightarrow$  The is similar to CoFe and would be suitable for a GMR device.

nu.

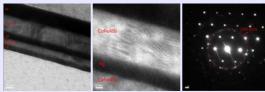
THE UNIVERSITY of York

[4] A. Hirohata et al., Materials, 11, 105 (2018)

Co,FeSia Alad


#### Roadmap on Heusler Alloys<sup>[2]</sup>



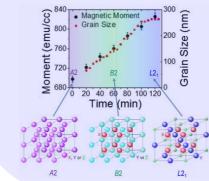

A. Hirohata et al., J. Magn. Magn. Mater. 509, 166711 (2020)
A. Hirohata et al., IEEE Trans. Magn. 51, 07160747 (2015)
J. Sagar et al., Appl. Phys. Lett. 105, 032401 (2014)

#### **Current-Induced Crystallisation**

#### CFAS/Ag/CFAS nanopillars :



#### High-resolution transmission electron micrographs :




Cross-sectional TEM images of the GMR device with 300k and 800k magnification.

- Diffraction pattern confirms CFAS (220) crystallisation.
- Lattice constant is estimated to be 0.57 nm, which is 96.6% of that estimated by the corresponding XRD.

T CREST JEOL

#### Co2Fe(Al,Si) / Ag / Co2Fe(Al,Si) trilayers : \*



The current-induced crystallisation leads to the reduction in the corresponding resistivity.

- This acts as memory potentiation for an artificial GMR synapse.
- This offers more realistic neuromorphic computation with higher efficiency.

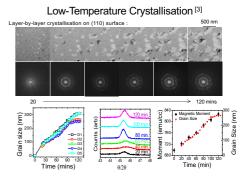
#### Summarv

- The concept of the current-induced crystallisation has been successfully demonstrated in a Heusler-alloy GMR junction.
- Due to the nature of a simple electrical current introduction, a nanoelectronics device does not require an es but stores the operation cycle permane proc
- The current-induced crystallisation minimises any atomic diffusion and interfacial mixing to degrade their performance.

EPSRC

The current-induced crystallisation is expected to be used in a variety of nanoelectronics devices, including a neuromorphic node network.

# eusler Alloy Films


## A. Hirohata<sup>1</sup>

1000 % it ~2045

2029

2024

2019



Resistance change after a series of pulse current applications of 500 μA up to 5 mA for

100  $\mu s$  up to 500  $\mu s$  in a GMR device consisting of CFAS/Ag/CFAS.

The initial GMR effect is extremely small at only 0.04% and is very unstable, with no stable anti-parallel configuration.

 $\bullet$  Using Ohm's law, the application of a 100  $\mu A$  current for 10 s introduces  $6.24 \times 10^{-14}$  J to a Heusler alloy nanopillar (10 nm thick and 100

 $\,$  By assuming the resistivity is similar to that of Co (6.24 nW·m).

J/mol·K and the density of Co is 8.90 g/cm<sup>3</sup>.

For an ideal case, this increases the temperature of the Heusler layer by 51.5K.

Since the heat capacity of Co is 24.81

nm diameter).